A Computational Grammar of Bangla using the HPSG
formalism: Developing the First Phase

Naira Khan”
Dr. Mumit Khan**

In this article we describe an endeavor to develop a computational grammar of
Bangla in the Head-Driven Phrase Structure Grammar (HPSG) formalism and the
resultant first phase of such an undertaking. Although simplistic in its makeup the
HPSG formalism is a highly developed framework which allows us to describe
languages in terms of hierarchical feature structures making it a powerful tool for
computational as well as psycholinguistic research whereby features specific to a
language can be captured and simultaneously cross-linguistic features common to
all languages i.e. language universals may be explored. To implement our
grammar we used the Linguistic Knowledge Building (LKB) system - a powerful
tool comprising both a syntactic and a semantic level that allows the user to parse
as well generate by using the formalism to code in linguistic rules through feature
structures and feature unification.

1. Introduction

Developing a computational grammar for a natural language is undoubtedly a
complicated task. A computational grammar is a grammatical description of a
natural language in a computational framework - one that is inherently important
in various applications of Natural Language Processing (NLP), ranging from
low-end applications such as a grammar checkers or spelling-checkers to high-
end ones such as dialogues systems, machine translation, etc. These involve
parsing human sentences which pose considerable problems due to the
ambiguous nature of natural languages. Hence, grammar development, also
knewn as grammar engineering, presents a formidable task and requires a
formalism that mirrors a very high-level programming language and skills in
developing an implementable account of linguistic phenomena (Copestake,
2002). As described in the following, we have attempted to embark on such an
endeavor for Bangla, using HPSG - a formalism that is striking in its own right;
and an implementation platform known as LKB also unique in that it is

Lecturer, Dept. of Linguistics, University of Dhaka
** Head, Centre for Research on Bangla Language Processing, BRAC University

200 The Dhaka University Journal of Linguistics

linguistically motivated, has semantic representation in the form of Minimal
Recursive Semantics (MRS), and most importantly, it is bidirectional being
equipped with both a parser and a generator (Copestake and Flickinger, 2000).

1.1 The Formalism: Head-driven Phrase Structure Grammar (HPSG)

Developed by Pollard and Sag (1987, 1994), the Head-driven Phrase Structure
Grammar (HPSG) is a non-derivational generative grammar theory. It evolved
directly from attempts to modify its immediate predecessor - Generalized Phrase
Structure Grammar (GPSG). The name ‘Head-driven Phrase Structure Grammar’
was chosen to reflect the increasingly recognized importance of information encoded
in the lexical heads of syntactic phrases. In other words, the formalism is based on
‘lexicalism’ i.e. the lexicon is more than just a list of entries in that it is in itself richly
structured with individual entries being marked with types and the types form a
hierarchy. HPSG uses a uniform formalism and it is its modular organization that
makes it so attractive for natural language processing. (Sag and Wasow, 1999)

1.2 The Implementation Platform: LKB and the LinGO Grammar Matrix
An ongoing collaboration, the Linguistic Grammars Online (LinGO) initiative at
Stanford University makes available a number of open-source, HPSG related
computational resources, and includes partners in the US, Europe and Asia. Freely
available online, these resources include grammars, lexicons, and the Linguistic
Knowledge Based (LKB) Grammar Engineering Platform. (Sag and Wasow, 1999)
Used most extensively for HPSG, the LKB system is a grammar and lexicon
development environment for typed feature structure grammars. The LKB source is
freely available and implemented in Common Lisp. Typed feature structure
languages are essentially based on one data structure and one operation — the typed
feature structure and unification, respectively. The constraints on the type system
provide a way of capturing linguistic generalizations. This is a powerful combination
in that it allows a grammar developer to write grammars and lexicons that can be
used to parse and generate natural languages (Copestake, 2002).

The largest grammar developed on the LKB is the LinGo project’s English Resource
Grammar (ERG) (Copestake, 2002). The LKB was also used as the test-bed for a
number of teaching grammars and smaller-scale grammars for other languages
including Japanese (JACY) and Greek (Modem Greek Resource Grammar). This
grammar writing experience across a variety of languages was sublimated into devising
the LinGO Grammar Matrix -- a framework to aid in the development of broad-
coverage, precision, implemented grammars for diverse natural languages. These
resources can be accessed online at the following URL: http:/lingo.stanford.edw/

ool e srifiem afast 201

1.3 Previous work

To our knowledge no complete or extensive endeavor has yet been undertaken for the
development of a grammar of Bangla in a computational framework. However, the
HPSG formalism itself is not new to Bangla, as we find that both HPSG and LKB have
been used extensively for the implementation of Bangla compound verbs (Paul, 2004).
This article builds on a rudimentary grammar (Khan and Khan, 2006) including new
enhancements (Mahmud and Khan, 2007) and some new proposals. The primary
difference here is the inclusion of case marking and case relations, which the previous
grammar was completely devoid of. Other differences include a new proposal for
encoding compound verbs and addressing the issue of adverb movement within the
parameters of grammaticality. Although other formalisms such as Lexical Functional
Grammar (LFG) (Sengupta and Chaudhuri, 1997; Haque and Khan, 2005) and Context
Sensitive Grammar (CSG) (Hoque and Ali, 2004; Murshed, 1998; Selim and Ikbal,
1999) have also been used in order to parse some simple sentences of Bangla, it should
be mentioned that these endeavors were always an attempt to parse a few sentences
rather than build a complete computational grammar for Bangla. Apart from these,
parsing in Bangla has primarily been statistical or based on shallow parsing with little
or no semantic representation (Billah and Sikder, 2004; Saha, 2006; Naskar and
Bandyopadhyay, 2005). In fact grammar engineering is still in its infancy in terms of
South Asian languages. The only example so far would be an unpublished rudimentary
grammar of Hindi in HPSG/LKB by Jeremy Kahn, produced as an output of a
Grammar Engineering course (Ling 567) at the University of Washington. Apart from
that, some sparse amount of work on certain aspects such as code-switching (Goyal et
al, 2003); and considerable amount of work in LFG on Hindi can be found.

2. A Computational Grammar for Bangla: The First Phase

S A
NP VP
| P
i N NP vV
| | |
N N khay
| |
biralti aam »

202 The Dhaka University Journal of Linguistics

W Parse Chart for "biralti,.." .

, 0-1 biralti—0-1[7) COUNT-N-LEX——-0.1 [8] DEF_NOUN~0.1 (9] BARE-NP———0-3 [15] SUBJHEAD
| 2.3 khay—2.3 [12) TRANS VERB-LEX >1:3[13] COMP-HEADZ1-3 [14] BASIC-HEAD-OPT-SUBJ

3 >

It should be mentioned here that at this stage the Bangla grammar is in LKB proper
written in LISP and hence has been encoded in basic Latin with a transcription system
devised by us based on phonetic makeup. However, LKB also has a wrapper program
known as LKBTrollet that allows Unicode support for better multilingual support and a
cleaner, more logical interface (http://wiki.delph-in.net/moin/LkbTrollet). With this
program we will ultimately be able to parse Bangla sentences in the Bangla script, and
we have marked this as one of our short term goals.

In the following sections we have addressed various linguistic phenomena
relevant to developing the first phase of the computational grammar for Bangla in
HPSG, along with the implementation methodology.

2. Methodology

The Starter Grammar: One of the best tools that the LinGO project provides is
the starter grammar. Instead of writing up a grammar from scratch, the Lingo
Grammar Matrix (available at: http://www.delph-in.net/matrix/) allows you to
automatically generate a ‘starter grammar’ consisting of the bare minimum
lexical entries and rudimentary rule types by configuring certain cross-
linguistically common typological properties in accordance with the grammar of
the target language. The starter grammar consists of lexical entries comprising
two nouns, two verbs, rules for basic word order, types and constraints for
determiners, basic sentential negation, yes-no question strategies and co-
ordination strategies.

The Bangla Grammar: The Bangla HPSG grammar written and implemented in
the LKB system by building on the Matrix starter grammar comprises the
following linguistic phenomena:

Basic Word Order and Phrase Structure Rules: Although Bangla is a non-
configurational language we must be careful to note that word-order is not
completely free in that all possible arrangements of words within a sentence are not
grammatical. Although it can be said that Bangla has a pragmatically free word
order, nevertheless word ordering is predominantly Subject-Object-Verb (SOV).

s e erEifsas ofas 203

The Lingo Grammar Matrix allows you both options in that you can begin with a
starter grammar with:

a. an SOV word order, whereby other orders will then be considered
ungrammatical but can be included through extra rules.

b. a pragmatically-free word order, whereby the structures that are
ungrammatical can subsequently be constrained to prevent the grammar
from over-generating.

For our grammar we decided to begin with an SOV ordering as described below:
Eg: ami aam kha-i
I.1.sg mango eat.l.pres-hab

S o \Y
Hence phrase structure rules in Bangla have been coded accordingly treating it as
Head-Final Specifier-Initial with the following rule instance:
comp-head := comp-head-phrase.
subj-head := subj-head-phrase.
And the following type definitions from the Matrix:
comp-head-phrase := basic-head-lst-comp-phrase & head-
final.
subj-head-phrase := basic-head-subj-phrase & head-
final &

[HEAD-DTR.SYNSEM.LOCAL.CAT.VAL.COMPS < >].

Agreement and Relations: Bangla is a fusional language with agreement issues
primarily pertaining to Subject-Verb agreement where the verb- is marked for
person, grade, tense, aspect and modal information.
The prototypical structure of the Bangla verb can be shown as:
ROOT+{tense+aspect+person-grade}/imp {2"%/obl 2"/1% incl}

Apart from this, certain adjectives have gender agreement with nouns and
number agreement is relevant for certain determiners and nouns.
Built on instances of the Matrix these agreement issues are dealt with the
following type definition:
png :+ [PER person,

NUM number,

GRD grade,

TPC topical,

GEN gender].

The subtypes of png and their respective values are described in the following:

204 The Dhaka University Journal of Linguistics

Person [PER]

For person agreement we have the subtype PER with values ‘first’, ‘non-first’,
‘second’ and ‘third’. The value ‘non-first’ is introduced as the honorific forms of
the second person and third person have identical verbforms:

tini dekhen

apni dekhen

This is done through the following code in the Type file:

person := *top*.

first := person.

non-first := person.

second := non-first.

third := non-first.

Grade [GRD]

In Bangla the second and third person can be further subdivided into grades:
2P 3P

Honorific apni tini

Non-Honorific tumi she

Pejorative tui

These are introduced through the subtype GRD and the values ‘hon’ for
honorific, ‘non-hon’ for non-honorific and ‘pej’ for pejorative. An alternative
way of coding grade would be to split the values of the second and third person
within the subtype of PER rather than introducing a new subtype.

grade := *top*.

hon := grade.

non-hon := grade.

pej := grade.

Topicality [TPC]

A new subtype TPC is introduced as Bangla nouns take different plural markers
based on topicality levels.

ra — a plural marker that typically collocates with nouns of high topicality and not
with those of low topicality.

gulo - a plural marker that typically collocates with high as well as low topical
nouns.

It has the values of ‘high’ and ‘non-high’ which usually correspond to topicality
issues of animacy, human, non-human, etc.

o3l ffeme smiftes ofas 205

topical := *top*.
high := topical.
non-high := topical.

Gender [GEN]

Although gender agreement is not prolific as Bangla only has lexical gender,
certain adjectives and nouns have gender agreement only in the feminine form
and hence the subtype GEN has values ‘fem’ and ‘non-fem’. As all nouns
whether masculine or feminine can be modified by the masculine adjective the
‘masc’ value is kept undefined.

Number [NUM]

Bangla verbs do not have number agreement. However, the subtype NUM serves
the purpose of defining pluralizers and definiteness markers between count and
mass nouns. It has the values ‘sg’, ‘non-sg’ and ‘pl’.

Case Relations: Bangla has 6 morphosyntactic cases where 5 of them are
analytic and one periphrastic. Amongst the analytic case markers, accusative and
dative have identical markers and hence the two comprise a single value ‘acc-
dat’. The instrumental and locative cases are a similar issue. In case of the
absence of case markers in transitive situations we have encoded “intrinsic case
information on the arguments of verbs which will match the protopycal
nominative and accusative nouns in terms of topicality. It is due to the limited
size of the lexicon that we were able to do this. This is an oversimplified view of
case-marking in Bangla because there are several issues of morphosyntactic
ambiguity which are not dealt with in the first phase of this grammar.

The feature CASE is defined for the type noun and adpositions.

noun :+ [CASE case].

np :+ [CASE case].

case:= *top*.
nom := case.
acc-dat := case.
gen := case.

instr-loc:= case.

abl := case.

Adpositions are constrained through the head-complement rules to exclude
adpositions as head daughters in order to make them post-positions rather than
prepositions.

206 The Dhaka University Journal of Linguistics

The case information is added to the valence features of the transitive verb types.
Noun and pronoun types are also modified to reflect case values.

It should be denoted that the Bangla case marking system is extremely
ambiguous from a morphosyntactic perspective due to interchangeable case
markers and case relations being determined through ordering of constituents as
well as topicality. In our grammar we have kept the most simplistic system of
case relations, however, in another rudimentary grammar (Mahmud and Khan,
2007) case marking has been implemented in the following manner:

A simple straight-forward approach was taken whereby, the related constituents of a
verb was disambiguated by allowing a particular constituent (subject or object) to take
a group of case-markers instead of a particular one, where different case-markers could
morphologically assign different cases for a single constituent, but its role would still
be identifiable. The ambiguity problem was resolved using the type hierarchy system
of LKB as shown in the following figure (Mahmud and Khan, 2007):

case-inflect

pp+loc nom—ace=lce—zenpi Teu
nom+ioc nom-ace+gerpl gensg
st abl acc—genpl
lo¢ nem v
ace genpl

Fig. 1. Proposed case markers ™ hierarchyv for ‘Bangia’.

Types and Lexical Entries: For our first phase we have encoded the following
major word classes as lexical entries and their respective types written into the
lexicon.tdl and bangla.tdl files respectively, in the starter grammar:

Nouns: The nouns consist of, at the very first level, a basic noun form that has
determiner optionality in that a Noun Phrase (NP) can consist of [noun %

oIt e sifdss sfast 207

determiner]. The basic noun-lex is then classified into various types of common
noun and proper noun that inherit from the basic noun form but have constraints
particular to each type. Common nouns are constrained to be in the 3" person and
are subdivided into:
¢ Common nouns that don’t take determiners.
¢ Count nouns.
e Mass nouns.
Count nouns are further constrained as singular in number (NUM sg) and
according to topicality as nouns in Bangla have different plural markers based on
differences in levels of topicality. Mass nouns are constrained for number
information (NUM non-sg) in order to prevent it from taking any plural markers.
Proper nouns are constrained to be in the 3" person and don’t take determiners.
Proper nouns in the vocative case have not been addressed at this level.
An example of a type:
common-noun-lex := noun-lex &
[SYNSEM.LOCAL [CAT.VAL.SPR
< [LOCAL.CONT.RELS < ! [PRED
reg_quant_rel]l | >] >,
CONT.HOOK.INDEX.PNG [PER third] 1 1.
A typical nominal lexeme for ‘cow’:
; cow
goru := count-n-lex &
[STEM < "goru" >,
SYNSEM.LKEYS.KEYREL.PRED "_goru_n_rel"].

Pronouns: Pronouns are types that inherit from the basic noun-lex but are
constrained to be determinerless and do not inflect.

Pronouns are constrained for number, person and case information in
agreement with its respective verb form due to pronominal marking on the verb.
The constraints have been split in that the number and person information is
coded in the type file while the case information comes from the lexical entry.

Type definitions:
2sg-pronoun-lex := pronoun-lex &
[SYNSEM.LOCAL.CONT.HOOK.INDEX.PNG [PER second,
NUM sg] 1.
2sg-nh-pronoun-lex := 2sg-pronoun-lex &

[SYNSEM.LOCAL.CONT.HOOK.INDEX.PNG [GRD non-hon]].

208 The Dhaka University Journal of Linguistics

2sg-nh-nom_pron-lex := 2sg-nh-pronoun-lex.
Lexical entry for the second person singular non-honorific pronoun:
i2p.sg (you)
tumi := 2sg-nh-nom_pron-lex &
[STEM < "tumi" >,
SYNSEM.LOCAL.CAT.HEAD.CASE nom] .

Determiners: The basic determiner type is constrained to have SPR value that is
compatible with nouns that take determiners. The determiners are treated as
quantifying or demonstrative pronouns and are subdivided into demonstratives
and non-demonstratives. The non-demonstratives are then further divided into
proximal and distal demonstratives. Further distinctions can be made by building
on this principle.
Examples of type definitions:
demonstrative_qg rel := reg_guant_rel.
non+demonstrative_qg rel := reg_quant_rel.
proximal+dem_qg rel := demonstrative_g rel.
distal+dem_g rel := demonstrative_qg rel.
The lexical entry inherits from ‘determiner-lex’ with the type definition
defining the predicate relation:
oi := determiner-lex &
[STEM < "oi" >,
SYNSEM.LKEYS.KEYREL.PRED "_oi_distal+dem_g rel"].

Verbs: The starter grammar provides a basic verb type and two subtypes as
transitive and intransitive forms that inherit from the basic verb.

For Bangla we created a new transitive verb (trans-verb-lex) which inherits
from the transitive verb as well as the basic verb and which was constrained for
case agreement with the nouns that act as the arguments as word ordering can
mark case relations when no overt marker is present. The case information was
coded in accordance to a definite order to prevent ambiguities. Argument order
must follow head-final ordering.
trans-verb-lex := verb-lex & transitive-lex-item &

[SYNSEM.LOCAL.CAT [VAL [SUBJ < #subj >,
COMPS < #comps >]1],
ARG-ST < #subj &
[LOCAL.CAT [VAL [SPR < >,

T ffamyer s sifat 209

: COMPS < >],
HEAD noun & [CASE nom]]] ,
#comps &
[LOCAL.CAT [VAL [SPR < >,
COMPS < >],
HEAD noun & [CASE acc-
datl]] > 1J.

A basic ditransitive verb was created by building on the principle of the
transitive verb which inherits from the transitive verb and basic verb and is
constrained for case information.
ditrans-verb-lex := verb-lex & ditransitive-lex-item &

[SYNSEM.LOCAL.CAT [VAL [SUBJ < #subj >,
COMPS < #compl , #comp2 > 1],
ARG-ST < #subj &
[LOCAL.CAT [VAL [SPR < >,
COMPS < > 1,
HEAD noun & [CASE nom]]] ,
#compl &
[LOCAL.CAT [VAL [SPR < >,
COMPS < >],
HEAD noun & [CASE acc-dat]]],
#comp2 &
[LOCAL.CAT [VAL [SPR < >,
COMPS < >],
HEAD noun & [CASE acc-dat]]] > 1.

Building on this instance it is possible to create different types of transitive and
ditransitive verbs which differ in terms of case information of its arguments. In
such cases it is more economical to create a generic type devoid of case
constraints and to create specific supertypes that inherit form it.

Lexical entry for verbs:

As Bangla verbs minimally consist of a root and its inflection where the
inflection carries agreement constraints, hence the lexical entries can be written
in two ways depending on the way the inflectional rules are coded. Hence the
lexicon may consist of full verb forms for each person variation or the root forms
only.

Full verb form:
hasho := intransitive-verb-lex- &

210 The Dhaka University Journal of Linguistics

[STEM < "hasho" >,
SYNSEM [LOCAL.CAT.VAL.SUBJ
< [LOCAL.CONT.HOOK.INDEX.PNG [PER second,

GRD non-hon]] >,
LXEYS.KEYREL.PRED "_hasho_v_rel"]].
Only the root form:
hash := intransitive-verb-lex &
[STEM < "hash" >,
SYNSEM.LKEYS.KEYREL.PRED "_hash_v_rel"]].

This is discussed in more detail in the ‘Verbal Inflection’ section.

A Proposal for Implementing Compound Verbs:

Any analysis of a Bangla corpus will reveal that about half the verbs appear in
larger complexes namely compound verbs. The prototypical structure of a
compound verb is (Paul, 2004):

V1-conjunctive participial + V2, where V1=matrix verb; V2=light verb
eg. kin -e + dilo

The conjunctive participials as well the number of V2s are fixed in Bangla
whereby the V1 remains static and only the V2 is inflected.

Ideally we want to be able to parse both the verbs with type definitions that encode the
V1 verbal as well as the V2 light verb. However at this stage we base the parse on
entire compound as one entity by treating the space between the two verbs as a
character itself with the verb beginning at V1 and ending at V2 with the inflection of
the V2 acting as the input for forms to be generated. This idea is based on the LKB’s
ability to treat multiword lexemes (eg. ice cream) with one affixation site. This is
specified on a per-entry basis, via the user-definable function find-infl-pos which
allows affixation on the rightmost element (Copestake, 2002).

Adjectives: In order to encode adjectives, it is necessary to have head-modifier
rules. The Matrix distinguishes between intersective and scopal modification and
has instances for both. In Bangla adjectives are of two types: attributive and
predicative. Attributive adjectives are pre-head modifiers while predicative
adjectives have a different syntactic structure with an invisible copula that
manifests when the tense changes. In the first phase of this grammar, we have not
dealt with the predicative adjectives and its respective PS rules.

il feefawrern s sifaet 211

The type definition for a simple attributive adjective for Bangla is:
adjective-lex := basic-adjective-lex & intersective-
mod-lex &

[SYNSEM [LOCAL.CAT [HEAD.MOD < [LOCAL.CAT [HEAD
noun,

VAL [SPR < > 111>,
VAL [SPR < >,

SUBJ < >,

COMPS < >,

SPEC < >],

POSTHEAD -]111].
Bangla adjectives don’t have person, number or case agreement. However, some
adjectives do have gender marking in that the feminine counterpart may be
overtly marked and only appropriate for lexically feminine nouns. Eg- shundori.
i.e. shundori meye ; *shundori chhele. This can be very easily coded by adding
an extra subtype for gender (GEN fem) and adding constraints to the MOD value
of an adjectival subtype and corresponding constraints to particular nouns.
Lexically feminine nouns can also combine with masculine adjectives and this
can be achieved by leaving the masculine value undefined so that the masculine
adjectives can combine with all nouns.
Lexical entry for an adjective will inherit from ‘adjective-lex’:
;bad/rotten
pocha := adjective-lex &
[STEM < "pocha" >,
SYNSEM.LKEYS.KEYREL.PRED "_pocha_n_rel"].

Adverbs: The adverb type definition inherits from matrix supertypes by default
and constrains the modified constituent to be verbal. The adverb then has to be
constrained to modify the V, VP or S. In Bangla, adverb movement is prolific in
that if it is moved around within the VP, the sentence and its syntactic tree
remain grammatical.
Hence the following type definition for adverbs is adequate at this stage:
adverb-lex := basic-adverb-lex & intersective-mod-lex
&

[SYNSEM [LOCAL.CAT [HEAD.MOD < [LOCAL.CAT.HEAD
verb 1>,

212 The Dhaka University Journal of Linguistics

VAL { SPR < >,
SUBJ < >,
COMPS < >,
SPEC < >]111.

The lexical entries for adverbs inherit from ‘adverb-lex’:
islow
aste := adverb-lex &

[STEM < "aste" >,
SYNSEM.LKEYS.KEYREL.PRED "_aste_n_rel"].

Due to adverb movement there will be multiple parse trees from a single
sentence. The LKB system allows us to compare these in terms of adverb
placement on particular nodes of the tree. These will however, have to be
constrained as all the trees may not be grammatical.

R (tini amake pocha aami dilen laratari)

mnmmnmmmwacmummvm» .
[4: 0] tini amake pocha aamti dilen taratari »

1) s A e e e

i
PRSI S 277 FEAD G N i s ki bl il st T T

N L v
ooh — 7 7 SUBLHEAD lini | emeke poche senii dien teralari
H . T W VR 7 7 SUBLHEAD tni) ameko poche sent) dien
i e A v oAV 7 7 HEAD-ADJ-NT amake poche sams dien | teratart
pocha '.l \./ taratart 2 7 COMPHEAD amaka | pochs serti cien tersterl
! N die 77 COMPHEAD emake | poche aemt! dien
i i 7 2 HEAD.-ADNT poche eamti dien | trelari
[2] s r 7 COMPHEAD pocha sent! | dilon terslart
% 7 7 COMPHEAD poche samti | dien
L — 7 7 HEAD-ADLNT dion [tweterl
v N v Rv ’
| ‘wmake NP Vo twstard
o~
A NP v
)
[pooha. N e
!
N
d)
i
s
_
NP hd
3
. S o
——

Lexical Rules: As defined by the Matrix, lexical rules for inflection are written
in the ‘irules.tdl’ and the ‘lrules.tdl’ files and inherit from the types ‘infl-ltow-
rule’ or the ‘infl-ltol-rule’, depending on whether the form is fully inflected or
not. There are other infl* rule types in the Matrix for various kinds of lexical
changes. For the first phase however we’ve used only the two mentioned above.

oI fgfaren sraifieem «fas 213

The inflection is defined through instances of rule types in the irules.tdl where
spelling rule subrules are denoted on a line beginning with %suffix. After
%suffix there is a list of pairs in which the first member matches the input form
and the second member describes the output form and thus can handle complex
morphophonemic changes. The * matches an empty string and the ! signals a
letter set. More specific rules are placed at the right and full forms can be written
for suppletive forms. (Copestake, 2002).

In the following we will describe the implementation of lexical rules in more
details through nominal and verbal instantiations:

Nominal Inflection: In the first phase nominal inflection is limited to plural and
definiteness markers. In terms of pluralizers, nouns in Bangla differ in which
plural marker can be added on the basis of topicality. The two most prolific
plural markers are ‘gula’ and ‘ra’. The marker ‘gula’ can be added to almost
anything except for a few highly topical nouns. ‘ra’ on the other hand can only be
added to nouns of high topicality. Hence TPC value constraints (high vs. non-
high) prevent inappropriate marking. In cases of nouns that can have both plural
markers the TPC value has been left undefined.
The type definition for plural markers:
;1 for nouns + 'gulo'

plur_nounl-lex-rule := infl-ltow-rule &
[SYNSEM.LOCAL [CAT.VAL.SPR
< [LOCAL.CONT.RELS < ! [PRED

reg_quant_rel] ! >] >,
CONT.HOOK.INDEX.PNG [PER third,
NUM sg,
TPC non-high 1] 1.
;73 for nouns + 'ra‘
plur_noun2-lex-rule := infl-ltow-rule &
[SYNSEM.LOCAL [CAT.VAL.SPR
< [LOCAL.CONT.RELS < ! [PRED
reg_quant_rel] ! > 1 >,
CONT.HOOK.INDEX.PNG [PER third,
NUM sg,
TPC high]] 1.
And the suffix rules are:
plur-nounl :=
$gsuffix (* gulo) (!t ttgulo)

214 The Dhaka University Journal of Linguistics

plur_nounl-lex-rule.

plur-noun2 :=
$suffix (* ra) (!t !tra)
plur_noun2-lex-rule.

Here the letter set is:
% (letter-set (!t bcdfghjklmnpgrstvwxz))

Definiteness markers can be added concatenatively to any common or count
noun. Mass nouns are constrained through NUM values to prevent them from
taking plural markers.

Verbal Inflection: In Bangla the prototypical verb has the following structure:
ROOT + [aspect+tense+person-grade] / mode
hash + ch + il + e-n
laugh.root prog. past. 3P.hon

The root, stripped of all inflection can only function as a stem in the second
person pejorative imperative form. In all other forms the verb carries person,
tense, aspect and modal information in the form of inflections and the root cannot
occur on its own.

Verbal inflection can be coded in two ways:

a) Each person form of the verb root is added as a lexical entry whereby the
person ending can act as the input for the suffix change rule for all other TAM
forms.
hashi := intransitive-verb-lex &

[STEM < "hashi" >,
SYNSEM { LOCAL.CAT.VAL.SUBJ
<[LOCAL.CONT.HOOK.INDEX.PNG [PER first,
GRD non-hon]]>,
LKEYS.KEYREL.PRED "_hashi_v_rel"]].

Here the ‘i’ of ‘hashi acts as the input for other forms of TAM inflection
introduced by the following type definitions:
lp_verb-lex-rule := infl-ltow-rule &

[SYNSEM.LOCAL.CAT.VAL.SUBJ < [
LOCAL.CONT.HOOK.INDEX.PNG [PER first]] >,

DTR.SYNSEM.LOCAL.CAT.HEAD verb].

lp-past_verb := 1lp_verb-lex-rule.

And the following suffix rule:
lp-past-verb :=
$suffix (* lam) (!ti !'tlam) (ai alam) (jai gelam)
(khai khelam) (pai pelam) (gai gelam) (ei ilam) ;
(ei=dei/nei)

o1 ffampen s afas 215

lp-past_verb.
lp-pastprog-verb :=
$suffix (* chilam) (!ti !tchilam) (ai acchilam) (ei
icchilam)
lp-past_verb.
Thus the the above two rules can generate the following forms from ‘dekhi’:
hashi > hashlam
hashi > hashchilam
b) An alternative to this would be to use the Irules.tdl file to create forms from
the roots by using an instance of an infl* rule such as:
type definitions:
lp_v-lex-rule := infl-add-only-no-ccont-ltol-rule &
[SYNSEM.LOCAL.CAT.VAL.SUBJ <|
LOCAL.CONT.HOOK.INDEX.PNG [PER first]1]>,
DTR.SYNSEM.LOCAL.CAT.HEAD verb].
1p-past-verb := 1p_v-lex-rule.
A lexical rule:

lp-past-verb := lp_v-lex-rule.
And a simpler suffix rule:
lp-verb :=

gsuffix (* i)
lp_v-lex-rule.
lp-past-verb :=
$gsuffix (* lam)
lp_v-lex-rule.

This not only simplifies the irules file, it allows us to keep only the root form in
the lexicon and generate all else with lexical rules.
hash := intransitive-verb-lex &

[STEM < "hash" >,
SYNSEM.LKEYS.KEYREL.PRED "_hash_v_rel"] 1.
Generated forms: hash > hashi
hash > hashlam

3. Results
With the above grammar it is possible to
a) recognize and parse a considerable number of grammatical sentences of
Bangla
b) generate various inflected forms from each parse.

An example of a parsing and generating a sentence is given in the following:
The sentence ‘tini amake pocha aamti dilen’ (s/he gave me the rotten mango) is
parsed below:

216

And forms generated from the above sentence is given in the following:

The Dhaka University Journal of Linguistics

=1a]x

I

tini N NP \
| T |
amake ADJ NP dilen
| | |
pocha N vV
!
aamti
|
N -
o P

p A ioin dpani
Close Close All Print
imi amake pocha aam den
kini amake pocha aam diben
fini amake pocha aam dicchen
ini amake pocha aam dicchilen
hini amake pochea aam diechilen
bini amake pocha aam dilen
tini amake pochs aam diten
bimi amake pocha aam divechen
binl amake pocha aamgulo den
kinl amake pocha aamgulo diben
Eiml amake pocha aamgulo dicchen
finl amake pocha aamgulo dicchilen
ini amake pocha samgulo diechilen
pini amake pocha asamgulo dilen
ini amake pocha aamgulo diten
ini amake pocha aamgulo diyechen
Yini amake pochea aamta den
Fini amake pocha samta diben
Rini amake pocha aamta dicchen
tini amake pocha aamta dicchilen
Lini amake pocha aamta diechilen
inl amake pochea aamta dilen
inl amake pocha aamta diten
fini emake pochea aamta diyechen
binl amake pocha aamt! den
imi amake pocha aamti diben
kini emake pocha aamti dicchen
finl amake pocha aamti dicchilen
biml amake pocha aarmti diechilen
tini amake pocha aamti dilen
finl amake pocha aamti diten
fini amake pocha aamti diyechen

o]

1ol

Each of the generated sentences can be expanded into a tree as well, as shown
from the edges 179, 128 and 101 respectively.

217

N
(I
s tini
i I T 1
¥ amake ADJ NP DIECHILEN
[§ | |
ﬁl pocha l;l
_-i AAMGULO
< > .

NS Fdge 128G

‘ | 1 T
tini N NP \
{ | T !
amake ADJ NP DILEN

| !

pocha N

|

AAMTA
< bd

B Edge 101G

! ~
i S

| A

NP VP

' T T —

I N NP v

| 1 T

itini N NP Y

|

N |
amake ADJ NP DIBEN
] !
pocha N
|

|
'i aam
|
{

Note that the terminal generated forms appear in the uppercase as opposed to the
non-generated forms.

218 The Dhaka University Journal of Linguistics

4. Limitations:
Being the first phase this grammar has a number of limitations typical of any
rudimentary grammar, that need to be overcome and are marked as our short-
term immediate goals:
e It has a limited lexicon. As the lexicon will be expanded subsequently
the irules and grammar rules will have to rewritten to a certain extent.
e The grammar is simple, in that it deals primarily with transitive,
intransitive and ditransitive situations.
e Case marking needs to be disambiguated and incorporated into the work.
e A proper framework is needed to deal with compound verbs where both
the verbs are parsed separately.
e Sentence situations with zero copula have not been addressed and need
to be encoded before the grammar complexifies.
e At this point the grammar has been written in a transcription system
using basic Latin, however, ultimately with the help of LKBTrollet we
want to be able to parse Bangla sentences in the Bangla script.

5. Future work

The goal of developing a computational grammar for Bangla will inevitably

coincide with the goals of any grammar development endeavor. Our first phase

grammar is an attempt to trigger the beginnings of writing up a full-scale

computational grammar of Bangla with certain long term goals outlined below:

¢ To write a computational description of Bangla.

¢ To test various linguistic hypotheses of Bangla using HPSG.

¢ To be able to include Bangla in various practical applications of NLP
systems.

¢ To create a resource of computational information for languages of similar
grammatical structure.

¢ To test hypotheses about linguistic universals that cut across languages.

¢ To facilitate the exchange of data and analyses of a wide range of phenomena
across diverse languages.

6. Conclusion

This article is based on the first phase of the development of a computational
grammar for Bangla — a gargantuan task that requires not only a description of a
natural language in a computational framework but an implementation tool suited
to the framework. The HPSG formalism is a rich linguistic framework built for

T feyfemyern srifiees offas 219

the mammoth task of grammar engineering and combined with LKB, provides a
suitable platform for the implementation of this formidable task. As shown in this
article, various aspects of linguistic phenomena of Bangla have been accounted
for and reinterpreted in an implementable framework. As an end result the
rudimentary grammar that we have built is capable of parsing and generating a
large number of sentences of Bangla. It is thus a point of beginning for further
development of a large scale Bangla grammar and consequently a computational
description that will prove extremely useful both from a computational and a
linguistic perspective.

References

Billah, Md. M and Shikder, M R. 2004. Syntax Analysis of Bangla Phrases. In
Proceedings of skjdfhasilf, pages 669-673, Dhaka.

Copestake, A and Flickinger, D. 2000. An open-source grammar development
environment and broad-coverage English grammar using HPSG. In Proceedings of
the Second conference on Language Resources and Evaluation (LREC-2000).
Athens, Greece.

Copestake, A. 2002. Implementing Typed Feature Structure Grammars. CSLI
Publications, Stanford.

Haque, M N and Khan, M. 2005. Parsing Bangla Using LFG: An Introduction. BRAC
University Journal, 2(1):105-110.

Hoque, M M and Ali, M M. 2004. Context-Sensitive Phrase Structure Rule for Structural
Representation of Bangla Natural Language Sentences. In Proceedings of
International Conference on Computer and Information Technology, pages 615-620,
Dhaka.

Khan, N and Khan, M. 2006. Developing a Computational Grammar for Bengali using
the HPSG Formalism. In Proc. of 9th International Conference on Computer and
Information Technology (ICCIT), Dhaka, Bangladesh.

Kumar, S N and Bandyopadhyay, S. 2005. A Phrasal EBMT System for Translating
English to Bengali. In Conference Proceedings: the tenth Machine Translation
Summit, pages 372-379, Phuket, Thailand.

Mahmud, A and Khan, M. 2007. Building a Foundation of HPSG-based Treebank on
Bangla Language (415). In Proceedings of the ICCIT, Dhaka.

Manav P. G, Mital R., Mukerjee A., Raina A. M., Sharma D, Shukla P. et al. 2003.
Saarthaka - A Bilingual Parser for Hindi, English and code-switching structures. In
Proceedings of the 11th Conference of the European Chapter of the Association for
Computational Linguistics, Budapest.

Murshed, M. M. 1998. Parsing of Bengali Natural Language Sentences. In Proceedings
of International Conference on Computer and Information Technology, pages 185-
189, Dhaka.

220 The Dhaka University Journal of Linguistics

Paul, Soma. 2004. An HPSG Account of Bangla Compound Verbs with LKB
Implementation. Ph.D. thesis, University of Hyderabad, Hyderabad.

Pollard, C and Sag, 1. 1987. Information-based Syntax and Semantics, Volume 1I:
Fundamentals. CSLI Publications, Stanford.

Pollard, C and Sag, I. 1994. Head-Driven Phrase Structure Grammar. University of
Chicago Press, Chicago.

Sag, I and Wasow, T. 1999. Syntactic Theory: A Formal Introduction. CSLI Publications,
Stanford.

Saha, G K. 2006. Parsing Bangla Text: An Intelligent Approach. ACM Ubiquity, 7(13): -
USA.

Selim, M. R. and Igbal, M. Z.. 1999. Syntax Analysis of Phrases and Different Types of
Sentences in Bangla. In Proceedings of International Conference on Computer and
Information Technology, pages 175-186, Dhaka.

Sengupta, P and Chaudhuri, B. B. 1997. A Delayed Syntactic-Encoding-based LFG
Parsing Strategy for an Indian Language — Bangla. Computational Linguistics, 23(2):
345-351.

Spencer, A. 2005. Case in Hindi. In Proceedings of the LFGO5 Conference, Bergen.

