
 32 Naira Khan

The Dhaka University Journal of Linguistics : Vol. 10, No. 20, Published by Registrar,
University of Dhaka, ISSN 2075-3098

Developing Digital Resources for
Computational Bangla

Naira Khan*

Abstract : As the world moves towards a digitally-literate global society,
digitising languages has become integral for information exchange in
every language. Despite being one of the most widely spoken languages
of the world, Bangla is one of the most digitally under-resourced
languages. In this respect, Bangla computing has become an essential
next phase in the evolutionary path of the language. A number of
endeavours in computational modeling can be noted as setting the
precursors for a robust repository of computational resources for
Bangla. From corpus-development, to Bangla WordNet, to POS tagging,
this paper conducts a survey of the state of Bangla computing as
undertaken in the form of various projects, and provides an overview in
the progress being made in developing respective digital resources.

1. Introduction

With the increase of technology and computerisation, computational
modeling of Bangla (exonym: Bengali) is fast becoming necessary.
Although Bangla is the 5th most widely spoken language in the world, it
is one of the most under-resourced languages in terms of digitisation.
Some efforts of computational modeling can be noted as setting the
precursors for a robust repository of computational resources for
Bangla. With a brief introduction to the Bangla language (§1.1) and its
script (§1.2), in the following sections I conduct a survey of the state of
computational modeling in Bangla and other digital resources that have
been undertaken in the form of projects.

1.1 The Bangla Language

1.1.1 Origin and History

Bangla is said to belong to the Satem branch of the Indo-European
language family. The Satem branch evolved into Indo-Iranian and
branched off into Indic or Indo-Aryan and Iraninan. Bangla originated

*
 Assistant Professor, Department of Linguistics, University of Dhaka

from the Eastern branch of Indo-Aryan, which descended from Indo-
Iranian but separated from Iranian (Ethnologue 2005).

1.2.2 Development

The Indo-Aryan branch underwent three stages of development:

a. Old Indo-Aryan: Vedic

b. Middle Indo-Aryan: The Prakrit

c. New Indo-Aryan : Bengali, Hindi, Assamese, Gujrati etc.

The Bangla language itself underwent three stages of development:

a. Old Bangla (900/1000–1400)—texts include Charyapada
devotional songs;

b. Middle Bangla (1400–1800)—major texts of the period include
Chandidas's Srikrishnakirtan;

c. Modern Bangla (since 1800)—Marked by the diglossic Sadhu and
Chalit variety.

(Shahidullah, 2002)

1.2.2.1 Standard Colloquial Bangla (SCB)

From the 1800s, Modern Bangla evolved until Chalit slowly displaced
Sadhu. The diglossic situation of Sadhu and Chalit gradually diminished
with the emergence of a standard form comprising the variety used by
the educated elite of Kolkata, India with Rarh as its hinterland.
(Chatterjee, 2002)

Over the course of time SCB has diverged into two recognizable
standard varieties of Bangla with marked differences in pronunciation
and lexical usage:

i) The Kolkata Standard: The standard form used in the Indian State
of West Bengal

ii) The Dhaka Standard: The standard form used in Bangladesh.

1.2 Speaking population and geographical distribution of Bangla

The Bangla language is spoken by 189,000,000 (appx) and is the state
language in Bangladesh as well as the Indian State of West Bengal
(Ethnologue, 2016). It is also spoken in Malawi, Nepal, Saudi Arabia,
Singapore, United Arab Emirates, United Kingdom, and USA. In terms of
number of speakers it is said be the 5th largest language in the world
(Ethnologue, 2016).

Developing Digital Resources for Computational Bangla 33 34 Naira Khan

1.3 Script Background

A descendant of the Brahmi script and used to write Modern Bangla,
the Bangla script evolved from the Proto-Bangla scripts of the Northern
type. Its closest relatives are the Assamese, Maithili, Oriya scripts as
well as Manipuri and the Newari scripts, and apart from a few minor
typographical differences these scripts are practically identical (Masica,
2001). The Bangla script is closely related to the Devanagari script but
visibly different in its markedly angular shape, which is said to have
resulted from differences in primitive writing implements that were
used to record the language at the time. As part of the legacy of
Brahmi the Bangla script is an abugida script i.e. an alphasyllabary with
the inherited the characteristics of:

i) The inherent vowel

ii) The attached sign for other vowels

iii) The compound ligature for consonant clusters

In the Bangla script, each consonant has a high back rounded vowel as
an inherent vowel. The inherent vowel is deleted when additional
vowel signs are added in the form of dependent diacritics (‘kar’ signs).
The script also inherited the phonetic arrangement of letters i.e.
consonants are not arranged arbitrarily but rather according to
phonetic features (Masica, 2001). The letters representing Bangla
consonants and vowels are given below:

i) Bangla consonantal letters:

 K L M N O (velars)

 P Q R S T (palatals)

 Z _ ` a b (dentals)

 U V W X Y (post-alveolars)

 c d e f g (bilabials)

 h i j q (approximants)

 m k l n (fricatives)

 o p (flaps)

 r s t u (alphabetic characters)

ii) Bangla vocalic Letters:

 A Av B C D E F G H I J

It should be noted that as computerization of Bangla often deals with
the language in a device setting such as a computer or a phone, more
often than not computational Bangla deals with the script or written
Bangla rather than spoken Bangla. In the following sections we will look
at efforts of building digital resources for computational Bangla, from
building corpora to parts of speech tagging (§2 - §5).

2. Corpus

2.1 Description

A trained annotated corpus can be a key resource to any linguistic
research endeavor. In fact many intuitive studies are challenged and
proven wrong on the basis of corpus analysis. However there still exists
no complete corpus for the Bangla language per se. Some sporadic
attempts at building both spoken and written corpora can be found
however in comparison to the large corpora that exist in languages such
as English, Chinese, Spanish etc. Bangla is still at an embryo level. The
first project that is known to have initiated Bangla corpus generation was
conducted from 1991 to 1995 by the Department of Electronics (DOE),
Govt. of India and Central Institute of Indian Languages (CIIL) (Arafat,
Islam and Khan, 2006). For quite some time this corpus of 3 million
words has been providing most of the data to linguists working with
Bangla. In fact N.S. Dash’s “Corpus Linguistics and Technology”, a
warehouse of corpus related studies is supported by data from the CIIL
corpus (Arafat, Islam and Khan, 2006). However, with the deviation of
the two standards for Bangla, namely the Kolkata Standard and the
Dhaka Standard, with marked differences in features there arose a need
to compile a corpus for Bangladeshi Bangla i.e. Dhaka Standard. This
necessity was sublimated into an endeavor by the Center for Research
on Bangla Language Processing (CRBLP) to compile the ‘Prothom Alo’
news corpus based on ‘Prothom Alo’ - the most widely circulated Bengali
daily in Bangladesh. Although ideally the initiative was to develop a
balanced corpus however this was met with two obstacles: a dearth of
available digital text in Bangla and the absence of a fully functional
Bangla OCR. As a result the focus of the corpus was automatically
concentrated on the available resources determining the nature of the
corpus. Hence the ‘Prothom Alo’ corpus is primarily a new corpus and
comprises 18,067,470 (eighteen million plus) word tokens and 386, 639
distinct word types (Arafat, Islam and Khan, 2006 : 2).

Developing Digital Resources for Computational Bangla 35 36 Naira Khan

An unpublished speech corpus of Standard Colloquial Bangla was
developed as a by product of the Text to Speech (TTS) project of CRBLP.
The said corpus comprises: 13 hours 32 minutes 44 seconds of audio
duration with 1068860 total words in text, 18029 unique words and
10895 total sentences. The speech corpus is phonetically transcribed
and tagged on a sentence level (Alom 2008 : 4).

The ‘Prothom Alo’ corpus was complied in two phases: collection of
raw text from the Prothom Alo website and the conversion to Unicode
(Arafat, Islam and Khan, 2006).

2.1.1 Collection of Text

The raw text for the corpus was collected by using a web crawler program
that surfed the ‘Prothom Alo’ webpage (www.prothom-alo.com) and
downloaded the available news text including that from magazines and
periodicals in HTML format. The text was extracted from the HTML files
using Linux shell scripts with library reference to Lynx. For the benefit of
research text was then categorized according to news categories. The
resultant corpus is three hundred and eighteen megabytes in size (Arafat,
Islam and Khan, 2006). Shown diagrammatically below:

Soursce: Arafat, Islam and Khan, 2006

2.2 Encoding Conversion

Conversion into Unicode was required due to the following problems
(Arafat, Islam and Khan, 2006):

ii) Glyphs and Fonts
iii) Keyboard mapping

2.2.1 Font conversion

Prothom-Alo uses three fonts, namely “Bangsee Alpona” and

“Prothoma”, “Alo” both true type fonts (TTF), for the online version of

the newspaper (“Prothom-Alo” www.prothom-alo.com). The encoding

of all these fonts are maintained in different files, which are later

required. Two font specific converters developed in Java named CRBLP
converter were used to convert the collected texts files to Unicode

texts (Arafat, Islam and Khan, 2006).

The CRBLP converter is a system which can convert Bangla ASCII
encoded text to Unicode. There are thousands of Bangla documents

written in the ASCII encoding system. ASCII encoded Bangla font and

keyboard was developed before Unicode become prevalent. Automatic

Unicode converter is the only solution to enter into the Unicode world.

Since several million of Bengali documents, websites etc. have been

written in ASCII, hence the easiest solution is an automatic Unicode

converter. The difficulties faced in terms of conversion into Unicode

was primarily twofold: different fonts that use different coding systems

and the same font uses different coding systems in different versions.
Here the converter was focused on Suttony MJ font developed by Bijoy

version 2000 as well as Bangsee Alpona, Prothoma and Alo developed

by Prothom-Alo (Alom, 2009).

The converter engine handles one-to-one, one-to-many mapping tables

and exceptions. Unicode defines vowels, vowel kars, consonants, digits

and symbols. For handling the conjuncts and ordering of glyph, i.e

substituting, positioning of glyphs is part of the open type font

(Microsoft, 2002) and USP10.dll file. The word Avwg is written as Av+g+w

maintaining congruity with oral spelling rules. This reordering is

handled by USP10.dll. In an ASCII based system it is typed as Av+w+g. All

glyphs of any true type font are separated in four forms: pre char, post

char, base char and sa char (conjugate char).

http://www.prothom-alo.com/
http://www.prothom-alo.com/

Developing Digital Resources for Computational Bangla 37 38 Naira Khan

2.2.1.1 Methodology

The methodology of the system is shown below.

2.2.1.2 File type identifier

The first phase is to detect the document type. The following tools are
included with the converter for extracting.

 MS word text - jakarta Apache project POI

 Html text extracting - html parser

 Text file

2.2.1.3 Converter Engine

The converter engine has a list of possible exceptions and different
forms of glyphs. Four possible forms of glyphs are identified for each
font. For each character of input text it is determined which list the
character matches and then it is converted.

2.2.1.4 Pre-Process

All glyphs of the ASCII encoded font are separated into four categories:

base-char: All full form characters.

pre-char: Character that attaches before the character it modifies.

post-char: Character that attaches after the character it modifies.

sa-char (conjunct char): All ligatures

2.2.1.5 Exceptions

The followings are identified as an exception:

1. Each of these [u, ¸, ï, û, Ë, i“, iƒ, ü] glyphs are checked

individually then converted to the corresponding Unicode
number.

2. i& (reph) will not appear after v, x, y, ~, „, Š but reph may

appear after base char + v, x, y, ~, „, Š + i&

3. will appear after these char [v, x, y, ~, „, Š]

4. u (chandrabindu) will always be on top of a vowel.

5. Gyph A + v will be replaced by Av. No Av glyph available in ASCII

font.

6. Halanta will be replaced by halanta + non-joiner

7. Normalization is done for † + v -> † v and † + Š -> † Š.

2.2.1.6 Conversion process

The conversion process is handled for four different forms. For each

forms the following glyph is reordered for Bangla Unicode. Such glyphs

are † • w .

The following algorithm works for each glyph of the word.

2.2.1.7 Algorithm

Step1: If the current glyph is the base char then use direct Unicode like

one to one mapping.

Step2: If current glyph is pre char then use pre char + halanta unicode.

Step3: If current glyph is post char then use halanta + post char

unicode.

Step4: If current glyph is sa char (conjugate) then use 1st char + halanta

+ 2nd char.

Step5: If current glyph is exceptions then handle it by looking up

exceptions rule. Such as, reorder i& as it appears before consonants.

Step6: If current glyph is [w, †, •] then reorder this char after next

complete char.

2.2.1.8 Results

Currently the system accuracy is above 90% (Alom, 2009). There are

two possible types of error: identifying the type of glyph of the font

and user data input error. User text may have wrong input which leads

to wrong output. Such errors are Puv` -> Puv`. The candrabindu always

appears after the vowel, however users typed it in before the vowel in

ASCII. (Alom, 2009)

2.3 Corpus Processing and Statistical Analyses

Some examples of tests with the Prothom Alo corpus are given below

with a comparison with CIIL corpus (Arafat, Islam and Khan, 2006):

Developing Digital Resources for Computational Bangla 39 40 Naira Khan

Top ten most frequent words in the Prothom-Alo corpus

Word Percentage Word Percentage

I 1.23% nq 0.57%

G 0.92% Kiv 0.52%

K‡i .084% Zvi 0.49%

bv .072% Ges 0.46%

†_‡K 0.62% n‡q‡Q 0.43%

Source : Arafat, Islam and Khan, 2006

Top ten most frequent words in the CIIL corpus

Word Percentage Word Percentage

bv 1.15% Ges 0.65%

K‡i 0.99% GB 0.65%

GB 0.94% †_‡K 0.55%

I 0.91% Avi 0.51%

nq 0.76% Zvi 0.5%

Source : Arafat, Islam and Khan, 2006

Although the ‘Prothom Alo’ yields interesting results it is still a focused
corpus in that it is based primarily on printed news. However it
provides a valuable starting point in building a comprehensive corpus
for Bangladeshi Bangla where previously there existed none.

3. Lexicon

3.1 Linguistic Analysis and Design

A lexicon is an essential language resource. It is the central repository
of data for all language processing applications. A proposal was made
to build a lexicon based on a collaborative effort through stand alone
application and web based interface (Dewan, Sarkar and Khan, 2006).
The words in the lexicon would be annotated with a combination of

tags addressing parts-of-speech, syntactic, semantic and other
grammatical features. This endeavor aimed to provide an integrated
user – friendly software interface to the user to annotate a large
existing Bangla word set and proposed a mechanism to collaboratively
integrate linguists and other interested people into the lexicon build up
process (Dewan, Sarkar and Khan. 2006).

Due to the unavailability of a complete Bangla corpus the process of
automatic lexicon development did not go too far. Hence the proposal
was to manually build up a lexicon and tag the words with features
such as word meaning, Parts-Of-Speech (POS) and other grammatical
features. The aim of the project was to formalize a procedure for a
collaborative effort by different individuals or groups towards
producing a tagged Bengali lexicon. This requires a POS tagging
interface, both web based and stand alone that would provide a
common platform for different contributors to enter tag information,
semantic and other grammatical information that is available in a
dictionary (Dewan, Sarkar and Khan. 2006).

3.2 Current Work

3.2.1 Lexica

There are three types of lexica that have been manually compiled for
various purposes by CRBLP (Alom, 2009):

a. A pronunciation lexicon with 92,567 ~93K entries comprising

- lexical entries

 - pronunciation in the Bengali

 - script

- pronunciation in IPA

b. A lexicon manually tagged for POS comprising 144833 entries with
49371 nouns, 63790 verbs, 30099 adjectives, 248 pronouns and
1325 indeclinables (adverbs, conjunctions etc.).

 The second lexicon was later augmented to include:

- Registers and terminologies

- Bangla to English dictionary

- Bangla to Bengali dictionary

Developing Digital Resources for Computational Bangla 41 42 Naira Khan

c. The CRBLP ‘Prothom Alo’ lexicon created as a byproduct of the
‘Prothom Alo’ Corpus comprising

3.2.2 Pronunciation

Apart from the pronunciation lexicon there has been sparse work on
pronunciation at CRBLP. This work has had primarily two outputs:

1. A database of Bangla phonemes and diphones (without phonotactic
sorting) created from the speech corpus (Alom, 2009).

2. A rule based automated pronunciation generator for Bengali
(Mosaddeque, UzZaman and Khan, 2006).

The latter is an APG that takes a Bangla word and generates the
pronunciation through grapheme to phoneme mapping. The Bangla
script is not completely phonetic since not every word is pronounced
according to its spelling. Therefore, it was necessary to use some pre-
defined rules to handle the general cases and some case specific rules
to handle exceptions. There are some rules that have been developed
by observing general patterns, e.g., if the length of the word is three
full graphemes then the inherent vowel of the medial grapheme
(without any vocalic allograph) tends to be pronounced as [o], provided
the final grapheme is devoid of vocalic. When the final grapheme has
adjoining vocalic allographs, the inherent vowel of the medial
grapheme tends to be silent. In the web version of the APG, queries are
taken in Bengali text and it generates the phonetic form of the given
word using IPA transcriptions. Furthermore, there is another version of
the system which takes a corpus (a text file) as input and outputs
another file containing the input words tagged with the corresponding
pronunciations. The actual challenge in implementing the APG was
dealing with polyphone graphemes. Due to the lack of a balanced
corpus, it was necessary to adopt a rule-based approach for developing
the APG. However, a possible future upgrade would be implementing a
hybrid approach comprising both a rule based and a statistical
grapheme-to-phoneme converter (Mosaddeque, UzZaman and Khan,
2006).

3.2.3 Morphology

Another project that was undertaken at CRBLP parallel to developing
the lexicon was the morphological analyzer for Bangla called JKimmo –
a multilingual morphological open-source framework that uses the PC-

KIMMO two-level morphological processor and provides a localized
interface for Bengali morphological analysis. (Islam and Khan, 2006)

The goal was to create a robust and reusable framework for
morphological analysis of Bengali with three primary components: the
generative morphological rules, the underlying morphological
processor, and the computational interface through which the user
experiments with language morphology. There has been previous work
in developing computational morphology for Bangla, using both simple
rewriting rules and feature unification grammars (Sengupta and
Chaudhuri, 1996) (Bhattacharya et al., 2005) (Dasgupta and Khan,
2004) (Dasgupta and Khan, 2004). An effort to create an interface for
Bangla morphological analysis has been developed at the Indian
Institute of Technology–Kharagpur (Bangla, www.mla.iitkgp.ernet.
in/morph_analyzer.html), which provides a web interface to the
underlying morphological engine using the iTRANS transliteration
scheme. Another such effort is the Xerox Arabic Morphological
Analyzer and Generator (Beesley, 2001), created with the Xerox Finite-
State Technology. The Xerox system accepts modern standard Arabic
words and returns morphological analyses and glosses. It has a Java
Applet interface and uses ISO-8859-6 and Unicode character encodings.
It is notable that none of these systems, unlike Jkimmo, is easily
extendible to other languages using Unicode-encoded input and
output. PC-KIMMO is one of the most widely available two-level
morphological analyzer that implements Kimmo Koskenniemi's two-
level morphology. The missing framework required to handle complex
scripts was provided by the Jkimmo. The implementation uses Java
Native Interface [10] as the bridge between PC-KIMMO and the
Unicode-enabled user interface, allowing the user to experiment in any
script supported by the Unicode standard. Since the analysis
framework uses standard internationalization (i18n) schemes, it is
trivially localized to any language by using property files for interface
definitions, and transliteration schemes for the Latin-Unicode-Latin
conversion needed to interface to PC-KIMMO backend. (Islam and
Khan. 2006)

3.3 Wordnet

To create a WordNet for a new language is a significant challenge, not
the least of which is the availability of the lexical data, followed by the

Developing Digital Resources for Computational Bangla 43 44 Naira Khan

software framework to build and manage the data. BWN is a software
framework to build and maintain a Bangla Word Net.

The basic building block of WordNet is a synonym set or Synset, a word
sense with which one or more synonymous words or phrases are
associated. Each synset in WordNet is linked with other synsets
through the lexical relations synonymy and antonymy, and the
semantic relations hypernymy, hyponymy, meronymy, troponymy, etc.
The applications of WordNet range from creating digital lexica to
performing word-sense disambiguation in automatic machine
translation. The synonym set {cvwL, MMYMwZ, †LPi, wPwoqv, b‡fŠKv, cswL,

c•Lx, c¶ai, c¶vjy, c¶x, cZM, cÎx, wenM, wen½} and {cvwL, Rwgi GKK we‡kl,

30 Kvwb f~wg, 26-33-35 kZvsk, AÂj GKK] for example can serve as an

unambiguous differentiator of the two meanings of “cvL” (Faruqe and

Khan, 2008). Such synsets are the basic entities in WordNet; each sense
of a word is mapped to a separate synset in the WordNet, and synset
nodes are linked by semantic relationships, such as hypernymy. The
primary focus of Bengali WordNet (BWN) is on design and
implementation – a framework to enable building and using Bengali
WordNet (Faruqe and Khan, 2008).

The design of Bengali WordNet closely follows that of the English Word
Net (wordnet sql builder, website http://wnsqlbuilder. sourceforge.net/
schema.html). The software design of Bangla Word Net allows linguists
to import lexical data in a “batch” mode, as well as visual querying and
editing of all the relations in the data. The basic design to support data
import and subsequent queries is relatively simple; however, support for
incrementally building the WordNet and for editing the data using a
visual interface are two key features of BWN, and these complicate the
design in a significant way. (Faruqe and Khan, 2008)

There are two common approaches for building a WordNet for a target
language: (i) a top-down approach, using an existing WordNet in a
source language to seed the linguistic data for the target language
WordNet, and (ii) a bottom-up approach, where linguists create the
WordNet synsets from scratch without depending on an existing one.
The first approach has been tried for a number of WordNets (Sinha,
Reddy and Bhattacharyya, 2006) (Vossen, 1999) (Farreres et al., 1998)
(Barbu, Eduard and Mititelu, 2005) (Chakrabarti, Rane and
Bhattacharyya, 2004). There have been many other recent attempts at

building a WordNet quickly, such as creating lexical networks by using
the web or some well-structured corpora such as Wikipedia, or the BNC
corpus. All of these require linguistic resources not yet available for
Bengali, hence the bottom-up approach was the most practical one –
by starting with the words in the target language instead of using an
existing WordNet. For BWN, the starting point was translating the
ontology, and words were chosen using a frequency list from the
Prothom Alo corpus. These synsets were compiled in lexical source
files, which were then injected into the WordNet database using a
“grinder”, and the resulting system can then be used through a set of
interfaces. (Faruqe and Khan, 2008)

A WordNet software system comprises four parts (Faruqe and Khan,
2008):

 Lexical Source Files: These files contain the synsets that are
manually compiled by the lexicographers, and are used to
eventually populate the WordNet database. The schema used for
nouns in the lexical source file is shown below:

Word name/Word name (english) / description /

Pos/||description(english)||

Hypernyms:

Synonyms:

And a sample “noun” record is shown below.

KvR work|wKQz Kiv ev •Zwii j‡¶¨ mivmwi Kvh©µg | we‡kl¨ |

||work -- (activity directed toward making or doing something)||

hypernyms:| Kvh©µg | K…ZKg© | NwUZ welq | gb¯—vwË¡K-welq | weg~Z©b |

weg~Z©-mËv | mËv |

synonyms: Kg©, Kg©KvÊ, KvR, KvRKvg, Kvg, Kvh©

Grinder: The grinder is used to convert the lexical source files in a
form that can be injected into the WordNet Database (WNDB).
Basically, it parses and processes the text from the lexical source
files into records, and then stores each record in the WNDB.

 WordNet Database (WNDB): WNDB is the heart of WordNet for
any language. For BWN, the basic design is similar to “Wordnet
SQL Builder” (wordnet sql builder, website http://wnsqlbuilder.

http://wnsqlbuilder.sourceforge.net/schema.html
http://wnsqlbuilder.sourceforge.net/schema.html
http://wnsqlbuilder.sourceforge.net/schema.html

Developing Digital Resources for Computational Bangla 45 46 Naira Khan

sourceforge.net/schema.html). However, there are significant
differences under the hood, primarily to support incremental
building of the database, and editing of the synsets directly via the
user interface. One of the design goals is to ensure that WNDB is
extensible to new lexical relations between synsets. In addition, in
the word table, the English word is stored so that it can be used to
link to other WordNets such as the EuroWordNet in the future. In
the sense table, both the word and the synset are mapped
together. In the synset table, an ID is generated for a synset but
does not create the synset itself. The synset is regenerated at run-
time from the sense and word tables, which plays a very
important role in the case of an edit or update operation.

Block diagram of the WordNet database
Source: Faruqe and Khan, 2008)

 WNDB Interface: There are essentially three different interactions
with WNDB:

 To create the initial database using the lexical source files, and
then to incrementally update the database, which is a feature that
significantly contributes to the database schema complexity;

 To use the database to query the data; and,

 To edit the lexical data, which is the other reason behind the
database schema complexity.

These interactions are described in more details below (Faruqe and
Khan, 2008):

1. Update WNDB: The Grinder takes each record from the lexical
source file, splits the text according to the database field and then
stores it into the database. The process is illustrated with the
following sample record:

“KvR |work| wKQz Kiv ev •Zwii j‡¶¨ mivmwi Kvh©µg | we‡kl¨ |

||work -- (activity directed toward making or doing something)||

hypernyms:| Kvh©µg | K…ZKg©| NwUZ welq | gb¯—vwË¡K-welq | weg~Z©b |

weg~Z©-mËv | mËv | synonyms: Kg©, KvRKg©Ó

After splitting the text, the grinder updates the word table with
the value of wordid (auto incremented integer), wordname, and
ewordname. Each synonym word is also entered into the word
table.

The Grinder then updates the synset table with synsetid (auto
incremented integer), description, edescription, and pos.

The Grinder then updates the sense table with those wordids and
the particular synsetid.

To update the hypernym table, we need the synsetid of that
particular record and its corresponding hypernymid; because each
synset, with the exception of “entity/mËv”, may have one or more

hypernyms. For that, we have to match each hypernym with the
wordname field’s value in the word table and then take the wordid;
with this wordid, we have to find out the synsetid (because the
hypernymid is nothing but a synsetid) from the sense table. Here we
assume that all of these hypernym words already exist in the word
table. The tree table keeps track of the parent of each hypernym
word, because hypernymy relates each child to its parent. Then the
Grinder updates the tree table with hypernymid and parentid (which
is also a synsetid). Since “entity/mËv” does not have a parent, its

parentid is given a value of 0 (zero) to indicate that.

http://wnsqlbuilder.sourceforge.net/schema.html

Developing Digital Resources for Computational Bangla 47 48 Naira Khan

2) Using WNDB: The second interface to the WNDB is for querying
the data in WNDB. A typical scenario is given below:

Diagram : A typical query in WNDB

Result of a search option

iv) User enters the query text into query field as shown in the
following figure.

Diagram : A typical text example

v) The WNDB search engine first finds the sense (or senses) of that
given word from word table then maps the wordid to the synsetid
from the sense table, and then returns those synsetids.

 In this example, ÒAskÓ has two senses (each word represents a

single value, as mentioned earlier).

vi) For each of the resulting synsetids, we have to find all the wordids
from the sense table. To create a synonym set, we have to find all
the wordnames from the word table after matching the wordids
for a particular synsetid. Here, we consider only one synsetid. For
this synsetid, the synonyms are {Ask (m¤úK©), Aewkó, evwK}.

vii) Then, we find the description for each synsetid from the synset
table with those synsetids. Then the search result is shown in the
previous screenshot.

viii) To view a noun’s hypernymy relation, as shown below, the
application execute steps 2-4 for each sense, and then, within
each sense, it performs the following steps:

ix) It finds the hypernymids from the hypernym table for the specific
synsetid.

x) The application also has to track each of the hypernym’s parent
from the tree table to track the child-parent relation.

xi) After performing steps 5 (a) and (b), it shows the hypernym from
child to parent order.

Diagram : A search result with hypernyms

Hypernym relation of a noun

3) Editing WNDB:

 BWN supports editing any existing record through a user interface
shown below. It also supports a limited version of delete
operation, because an unrestricted deleted record may destroy
the underlying tree. If the user wants to delete a record, there are
three cases to consider:

 If the record has a synonym, then we can delete it (updates
only the word table);

 If the record is used as a hypernym entry then we cannot
delete it without risking relational integrity;

Developing Digital Resources for Computational Bangla 49 50 Naira Khan

 If the record is not used as a hypernym entry, then we can
delete that record, which affects all tables except the tree
table. (Faruqe and Khan, 2008)

Diagram : BWN edit interface

Edit interface

BWN at the basic level supports building the WordNet database from
lexical source files using a grinder, and then supports querying the data
using an interface; in addition, it has two key features not found in
other designs support for incremental building of the WordNet
database, and for editing the WordNet data using an interface. These
two key features significantly contribute to the complexity of the
design and implementation of BWN. As BWN makes no assumption
about the underlying language, it should be extendable to other
languages as well. (Faruqe and Khan, 2008)

4. Part of Speech Tagging

4.1 Tagset

Despite several sparse attempts at automatic POS tagging of Bangla
there has been a lack of a standardised comprehensive tagset. Hence
the primary problems regarding POS tagging appear to be twofold: the
absence of a comprehensive balanced corpus and the lack of a

standard tagset. Despite the dearth of a comprehensive annotated
corpus, some recent evidence of experimental POS tagging using
stochastic models can be found using different tagsets. (Dandapat et al.
2004; Dandapat et al. 2007; Ekbal et al. 2008). The results are indicative
that the accuracy of the POS tagger can be significantly improved
through by integrating a morphological analyzer, affixation
information, name entity recognizer etc. (Mahmud and Khan, 2009).
Since POS tagging can provide a stepping stone towards a building a
syntactically annotated corpus it would be practical for the annotator
to have a detailed POS tagging guideline. With this focus in mind CRBLP
has created a POS tagging guideline for annotating Bangla to form a
syntactic tree bank. The resultant tagset thus designed is based on the
SPSAL tagset (SPSAL 2007) which has been proposed as a common
framework for all Indian languages and analyses for disambiguating the
confusing examples have primarily been influenced by the Penn tagset
for English (Santorini 1990). The CRBLP tagset is a ‘flat tagset’ in that it
lists the categories applicable to a particular language. The corpus used
for this project is the Prothom Alo corpus. During this project 30,000
words were manually tagged, amongst which 25,000 (appx.) had been
used as the training set and the remaining 5000 were considered as the
test set (Mahmud and Khan, 2009).

As syntactical bracketing is a task of shallow processing and the size of
the tagset is an important factor, only postpositions, accusative and
possessive case markers on nouns have been incorporated in this
tagset. A separate category ‘Suffixes’ has been included to reflect these
characteristics of morphology. When a noun or pronoun is takes on a
suffix, the base form and inflections are separated by a plus sign (+).
Verbs are categorized according to their form such as finite, non-finite
etc. A summary of the tagset is given below. Although, syntactic
distribution has been considered as the main criteria while designing
this tagset, there is also a conscious effort concerning encoding precise
syntactic information. For example, the word Ô†KbÕ (why) has been

tagged as a separate category Question Adverb (QRB), rather than
being included into Question Word (QW) in accordance with SPSAL
tagset (SPSAL 2007). The sub-categorizations has been done due to the
fact that Ô†KbÕ (why) can also act as a relativizer and simply tagged as

QW, it can’t be shown that that relative phrase is a ‘Relative Adverbial
Phrase’ (QADVP). Thus, resulting in loss of useful syntactic information

Developing Digital Resources for Computational Bangla 51 52 Naira Khan

in case of syntactically formalizing a relatively free word ordered
language (Mahmud and Khan, 2009).

4.2 Taggers

No specific tagger has been developed specifically for Bengali however

some widely used taggers have been used and experimented with.

Previously a rule based POS tagger has been used however only rules for

nouns and adjectives have been made explicit. (Hasan, UzZaman and Khan,
2007). Noteworthy work on POS tagging has been reported for Indian

Bengali where an HMM based approach is used for tagging. (Hasan,

UzZaman and Khan, 2007). Efforts of a suffix based tree tagger can also be
found for Bengali (Hasan, UzZaman and Khan, 2007). as well as a hybrid

POS tagger based on HMMs (Hasan, UzZaman and Khan, 2007).

A small comparative experimentation was conducted on three South

Asian languages i.e. Hindi, Telegu and Bengali using stochastic taggers

in order to test which one performs best. The experiments were

conducted using n-gram based unigram and bigram, HMM based and

Brill’s transformation based tagger. Although limited the results of the

experiments show that the Brill’s transformation based tagger’s

performance is superior to the other approaches in all the experiments.

The training, development and test data provided for the SPSAL contest

(Workshop on Shallow Parsing in South Asian Languages (SPSAL), 2007)
was used for the experiment. Training data sets for each of the
languages Bangla, Hindi and Telegu were used separately, to create the

training corpora. The test data provided there was the testing corpora.

All the data provided for the SPSAL contest uses the SSF format

(Bharati, Sangal and Sharma, 2006), however for convenience all the

data from the SSF format was converted to the much simpler format
used by the Brown corpus, included in NLTK (Bird and Loper, 2006).

The results of the experiments are given below.

The experiment was run with Unigram, Bigram, HMM and Brill’s tagger

on Bangla, Hindi and Telegu. For Bangla a training corpus with a
maximum of 1786 sentences consisting of 25426 tokens was used. The

test corpus consisted of 400 sentences and 5225 tokens. The

performances of the taggers are shown below (Hasan, UzZaman and
Khan, 2007 : 4):

Table 1. Performance of taggers on the Bangla corpus.

HMM Unigram Bigram Brill

63.6 56.9 55.5 69.6

Soruce: Hasan, UzZaman and Khan, 2007 : 5.

Table 2. Performance of taggers on the Hindi corpus.

HMM Unigram Bigram Brill

68.5 58.5 57.5 71.5

Soruce: Hasan, UzZaman and Khan, 2007 : 5.

Table 3. Performance of taggers on the Telegu corpus.

HMM Unigram Bigram Brill

56.6 42.8 42.2 66.9

Soruce: Hasan, UzZaman and Khan, 2007 : 5.

Brill’s tagger achieves accuracies of 69.6% using 25426 tokens for
Bangla, 71.5% using 26148 tokens on Hindi and 66.9% using 27511
tokens on Telegu, whereas the HMM tagger manages to obtain 63.6%,
68.5% and 56.6%. The Unigram and Bigram taggers manage 56.9%,
58.5% and 42.8%; and 55.5%, 57.5% and 42.2% respectively, using the
same number of tokens as Brill’s tagger. These results are also
comparable and fall in the same range as those of the SPSAL contest
(Hasan, UzZaman and Khan, 2007).

Based on these results the CRBLP tagset was tested using Brill’s
transformation based tagger.

4.3 Tagging issues and future work

The scope of the POS tagging guideline as outlined by CRBLP can
productively be extended with many more examples and corresponding
linguistic analysis for disambiguation. In fact the tagset itself is under a
development phase. In ‘Fineness vs. Coarseness’ issue the tags are always
chosen to be kept ‘coarse’ (Bharati et al. 2006; SPSAL 2007), because as
number of tags are decreases the accuracy of manual tagging increases.
Since the tagset presented is much finer in distinction, it is easy to see that
certain modifications to this design are required. Keeping in mind the
enhancement of both coarseness and linguistic aspect, it has been decided

Developing Digital Resources for Computational Bangla 53 54 Naira Khan

that the tagset should be modified further according to following three
issues at the current point of this stage:

1. Locative Nouns (NNL) and Temporal Nouns (NNT) have similar
syntactic distribution. Thus they can be subsumed under a single
category which is Spatial Noun (NST) as suggested in AnnCorra
(Bharati et al. 2006).

2. Intensifiers such as Lye, †ewk, A‡bK, have been categorized as

adverbs. But it has been observed that their syntactic distribution
is not as same as adverbs, because intensifiers always tend to
appear before adjectives or adverbs that they intensify, where
adverbs are allowed to appear anywhere in a sentence. Thus,
intensifiers should have different categorization (INTF) (Bharati et
al. 2006; SPSAL 2007).

3. Reduplication in order to indicate emphasis, deriving a category
from another category. For example Av‡¯— Av‡¯— (slowly slowly),

†QvU †QvU (small124.small), jvj jvj (red red) have been tagged using

the same tag for both words such as Av‡¯—/RB Av‡¯—/RB. But

reduplication is a highly productive process and it has been
proposed in AnnCorra (Bharati et al. 2006) to include a new tag
RDP for annotating reduplicatives. The current assessment
decides to adapt this technique where the first word will be
tagged by its respective syntactic category and the second word
will be tagged as RDP, as for example Av‡¯—/RB Av‡¯—/RDP, to

indicate that it is a case of reduplication distinguishing it from a
normal sequence (Mahmud and Khan, 2009).

The tagging guideline and tagset thus outlined serves to create an
opportunity for further scrutinization and investigation to build more
comprehensive and explicit tagsets.

6. Conclusion

As the world gravitates towards a digitally-literate global society,
Bangla computing has become integral in the evolutionary path for the
language. Despite being one of the most widely spoken languages of
the world, Bangla is one of the most digitally under-resourced
languages. Various efforts for computational modeling can be noted as
setting the precursors for a robust repository of computational
resources for Bangla. Although the current description is not

exhaustive, it presents a detailed description of projects undertaken.
The research conducted so far sets the stage for further work, which
can be compounded on, and pave the way for building an extensive
digitised repository of computational tools for Bangla.

References

A Part of Speech Tagger for Indian Languages (POS Tagger). 2007. Workshop on
Shallow Parsing in South Asian Languages (SPSAL), Twentieth International
Joint Conference on Artificial Intelligence.

Akshar Bharati, Rejeev Sangal and Dipti M Sharma. 2006. Shakti Analyser: SSF
Representation. IIT, Hyderabad, India.

Altaf Mahmud and Mumit Khan. 2009. Unpublished Technical Report. CRBLP,
Dhaka, Bangladesh.

Ayesha Binte Mosaddeque, Naushad Uz Zaman and Mumit Khan. 2006. Rule based
Automated Pronunciation Generator, Proc. of 9th International Conference on
Computer and Information Technology (ICCIT 2006), Dhaka, Bangladesh.

Barbu, Eduard and Verginica Barbu Mititelu. 2005. Automatic Building of Wordnets.
Proc. International Conference Recent Advances in Natural Language
Processing, Borovets, Bulgaria, pp. 329-332.

Bharati, A., Sharma, D. M., Bai, L. and Sangal, R. AnnCorra. 2006. Annotation
Corpora for POS and Chunk Annotation for Indian Languages. Language
Technologies Research Centre, IIIT, Hyderabad, India.

Colin P. Masica. The Indo-Aryan Languages. 2001. Cambridge University Press. New
York

Debasri Chakrabarti, Gajanan Rane and Pushpak Bhattacharyya. 2004. Creation of
English and Hindi Verb Hierarchies and their Application to English Hindi MT.
International Conference on Global Wordnet (GWC 04), Brno, Czeck Republic.

Dewan Shahriar Hossain Pavel, Asif Iqbal Sarkar and Mumit Khan. 2006.
Collaborative Lexicon Development for Bangla, Proc. International Conference
on Computer Processing of Bangla (ICCPB-2006), Dhaka, Bangladesh.

Dr. Md. Shahidullah. Bangla Bhashar Itibritta. 2002. Mowla Brothers. Dhaka

Fahim Muhammud Hasan, Naushad UzZaman and Mumit Khan. 2007. Comparison
of Unigram, Bigram, HMM and Brill's POS Tagging Approsches for some South
Asian Languages. Proc. Conference on Language Technology CLT07, Pakistan.

Faruqe, Farhana and Mumit Khan. 2008. BWN - A Software Platform for Developing
Bengali WordNet. International Joint Conferences on Computer, Information,
and Systems Sciences, and Engineering (CISSE 08).

Farreres, Xavier, German Rigau and Horacio Rodriguez. 1998. Using WordNet for
building WordNets. Proc. COLING/ACL Workshop on Usage of WordNet in
Natural Language Processing Systems, Montreal.

Firoj Alom. 2009. Unpublished Technical Report. CRBLP, Dhaka, Bangladesh.

Developing Digital Resources for Computational Bangla 55 56 Naira Khan

Gordon, Raymond G., Jr. (ed.), 2005. Ethnologue: Languages of the World, Fifteenth
edition. Dallas, Tex.: SIL International. Online version: http://www. ethnologue.com/.
accessed on 2016

K.R. Beesley. 2001. Finite-State Morphological Analysis and Generation of Arabic at
Xerox Research: Status and Plans in 2001. ACL Work-shop on Arabic Language
Processing: Status and prospects (Invited talk).

Manish Sinha, Mahesh Reddy and Pushpak Bhattacharyya. 2006. An Approach
towards Construction and Application of Multilingual Indo-WordNet, 3rd
Global Wordnet Conference (GWC 06), Jeju Island, Korea.

Md. Zahurul Islam and Mumit Khan. 2006. JKimmo: A Multilingual Combinational
Morphology Frame-work for PC-KIMMO. ICCIT, Dhaka, Bangladesh.

Microsoft: Developing OpenType Fonts for Bangali Script. November 2002. url:
http://www.microsoft.com/typography/OpenType%20Dev/bengali/intro.mspx.
accessed on 2016

P. Sengupta and B.B. Chaudhuri. 1996. Morphological processing of Indian
languages for lexical interaction with application to spelling error correction,
Sadhana, Vol. 21, Part. 3, pp. 363-380.

Barbara F. Grimes, Editor 1996. Ethnologue, 13th Edition, Summer Institute of
Linguistics, Inc.

Piek Vossen. 1999. EuroWordNet: A Multilingual Database with Lexical Semantic
Networks, Computational Linguistics, Volume 25, Number 4.
S. Bhattacharya, M. Choudhury, S. Sarkar and A. Basu. 2005. Inflectional
Morphology Synthesis for Bengali Noun, Pro-noun and Verb Systems. Proc. of
the National Conference on Computer Processing of Bangla, Dhaka,
Bangladesh, March, pp. 34 - 43.

S. Dasgupta and M. Khan. 2004. Feature Unification for Morphological Parsing in
Bangla. Proc. 7th International Conference on Computer and Information
Technology (ICCIT 2004), Dhaka, Bangladesh.

S. Dasgupta and M. Khan. 2004. Morphological Parsing of Bangla Words Using PC-
KIMMO. Proc. 7th International Conference on Computer and Information
Technology (ICCIT 2004), Dhaka, Bangladesh.
S.K. Chatterjee, The Origin and Development of the Bengali Language.2002.
Rupa and Co.

Steven Bird and Edward Loper. 2006. Natural Language Toolkit. http://nltk.
sourceforge.net. accessed on 2016

wordnet sql builder. 2008 http://wnsqlbuilder.sourceforge.net/schema.html
accessed on 2015

Workshop on Shallow Parsing in South Asian Languages (SPSAL). 2007. Twentieth
International Joint Conferences on Artificial Intelligence. Hyderabad, India.

Yeasir Arafat, Md. Zahurul Islam and Mumit Khan. 2006. Analysis and Observations
from a Bangla news corpus. Proc. of 9th International Conference on
Computer and Information Technology (ICCIT 2006), Dhaka, Bangladesh.

http://www.ethnologue.com/
http://www.microsoft.com/typography/OpenType%20Dev/bengali/intro.mspx
http://web.archive.org/web/19990429232804/http:/www.sil.org/
http://nltk.sourceforge.net/
http://nltk.sourceforge.net/
http://wnsqlbuilder.sourceforge.net/schema.html

